## SOLUTIONS TO WARM-UP

A. Draw this unit circle and label the coordinates of the given points.


## SOLUTIONS TO WARM-UP

B. Give a "definition" for each of the following in terms of $x, y$, and $r$ :
$\sin \theta=\frac{y}{r}$
$\csc \theta=\frac{r}{y}$
$\sec \theta=\frac{r}{x}$
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\frac{x}{r}$
$\tan \theta=\frac{y}{x}$
$\cot \theta=\frac{x}{y}$

## SOLUTIONS TO WARM-UP

C. Use your unit circle and definitions to evaluate the following expressions:

$$
\begin{array}{rr}
\sin 180^{\circ}=\frac{O}{1}=O & \tan 90^{\circ}=\frac{1}{0} \\
& =\text { undefined } \\
\cot 270^{\circ}=\frac{0}{-1}=O & \sec 360^{\circ}=\frac{1}{1}=1
\end{array}
$$

## Ch. 6 Group Quiz: Study List

*Find coterminal angles $\theta \pm 360 \mathrm{n}$ ( n is a whole number) *Find reference angles $\theta, 180-\theta, \theta-180,360-\theta$

* $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ triangles (know basic measurements and find trig ratios)
*Use unit circle to find "special" trig ratios for $0^{\circ}, 90^{\circ}$, $180^{\circ}, 270^{\circ}, 360^{\circ}$
*Find trig ratios, given a point, angle, triangle, or terminal side in a certain quadrant (apply negatives appropriately)

$$
\begin{array}{lll}
\sin \theta=y / r & \cos \theta=x / r & \tan \theta=y / x \\
\csc \theta=r / y & \sec \theta=r / x & \cot \theta=x / y
\end{array}
$$

*Solve for a missing side or angle in a right triangle:
Soh Cah Toa
*Apply inverses: $\sin ^{-1} \theta, \cos ^{-1} \theta, \tan ^{-1} \theta$
*Law of Sines
*Law of Cosines
*Area of Triangle: $\mathrm{A}=1 / 2$ (side1)(side 2 ) $\sin ($ included angle)
*Solve word problems using trig

## Formulas to know for the quiz!!!



$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Special triangles:


Law of Sines:


## Law of Cosines:

$\downarrow$ This side is across from this angle $\downarrow$ $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc}(\cos A)$
Finding the area of a triangle when the base and height are not given:
$\mathrm{A}=\frac{1}{2}($ side $)($ side 2$) \cdot \sin ($ included angle $)$

## Notes 6.6: Law of Cosines

$\downarrow$ This side is across from this angle $\downarrow$ $a^{2}=b^{2}+c^{2}-2 b c(\cos A)$ or $b^{2}=a^{2}+c^{2}-2 a c(\cos B)$ or $c^{2}=a^{2}+b^{2}-2 a b(\cos C)$

6.6 \#7-15odd, 21-24, 39,40,44,48
7.
 the entire decimal
6.6 \#7-15odd, 21-24, 39,40,44,48
9.


$$
\begin{aligned}
& x^{2}=1476-1440(\cos 30) \\
& \sqrt{x^{2}}=\sqrt{228.9234} \ldots \\
& \begin{array}{l}
x \approx 15.13 \\
\begin{array}{l}
\text { values in your } \\
\text { calculator by } \\
\text { using }
\end{array} \\
\text { and ANS }
\end{array}
\end{aligned}
$$

6.6 \#7-15odd, 21-24, 39,40,44,48

11-20 ■ Solving a Triangle Solve triangle $A B C$.
11.


$$
\angle B=180-(120+39.36)
$$

Find all missing sides and angles!

$$
\begin{aligned}
& c^{2}=10^{2}+18^{2}-2(10)(18)\left(\cos 120^{\circ}\right) \\
& c^{2}=424-360 \cos 120^{\circ} \\
& c^{2}=604 \\
& c=\sqrt{604} \\
& c \approx 24.58
\end{aligned}
$$

## 6.6 \#39

## APPLICATIONS

39. Surveying To find the distance across a small lake, a surveyor has taken the measurements shown. Find the distance across the lake using this information.


## 6.6 \#40

40. Geometry A parallelogram has sides of lengths 3 and 5, and one angle is $50^{\circ}$. Find the lengths of the diagonals.


Notes:
Angles are NOT bisected by the diagonals.
Opposite angles are congruent (all 4 add to $360^{\circ}$ ). Adjacent angles are supplementary.

## 6.6 \#44

44. Navigation Two boats leave the same port at the same time.

One travels at a speed of $30 \mathrm{mi} / \mathrm{h}$ in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$, and the other travels at a speed of $26 \mathrm{mi} / \mathrm{h}$ in a direction S $70^{\circ} \mathrm{E}$ (see the figure). How far apart are the two boats after 1 h ?


The rate is $26 \mathrm{mi} / \mathrm{h}$ and $30 \mathrm{mi} / \mathrm{h} \rightarrow$ how far do they travel in one hour?

Label your sides accordingly.

## 6.6 \#48

48. Towing a Barge Two tugboats that are 120 ft apart pull a barge, as shown. If the length of one cable is 212 ft and the length of the other is 230 ft , find the angle formed by the two cables.

